Crustal block-controlled contrasts in deformation, uplift, and exhumation in the Santa Cruz Mountains, California, USA, imaged through apatite (U-Th)/He thermochronology and 3-D geological modeling

Author:

Baden Curtis W.1,Shuster David L.23,Hourigan Jeremy H.4,Gooley Jared T.5,Cahill Melanie R.1,Hilley George E.1

Affiliation:

1. 1Department of Geological Sciences, Stanford University, Stanford, California 94305, USA

2. 2Department of Earth and Planetary Science, University of California−Berkeley, Berkeley, California 94720, USA

3. 3Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709, USA

4. 4Department of Earth and Planetary Sciences, University of California−Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA

5. 5U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, Alaska 99508, USA

Abstract

Deformation along strike-slip plate margins often accumulates within structurally partitioned and rheologically heterogeneous crustal blocks within the plate boundary. In these cases, contrasts in the physical properties and state of juxtaposed crustal blocks may play an important role in accommodation of deformation. Near the San Francisco Bay Area, California, USA, the Pacific−North American plate-bounding San Andreas fault bisects the Santa Cruz Mountains (SCM), which host numerous distinct, fault-bounded lithotectonic blocks that surround the San Andreas fault zone. In the SCM, a restraining bend in the San Andreas fault (the SCM bend) caused recent uplift of the mountain range since ca. 4 Ma. To understand how rheologic heterogeneity within a complex fault zone might influence deformation, we quantified plausible bounds on deformation and uplift across two adjacent SCM lithotectonic blocks on the Pacific Plate whose stratigraphic and tectonic histories differ. This was accomplished by combining 31 new apatite (U-Th)/He ages with existing thermochronological datasets to constrain exhumation of these two blocks. Additionally, surface exposures of the latest Miocene to late Pliocene Purisima Formation interpreted in 18 structural cross sections spanning the SCM allowed construction and restoration of Pliocene deformation in a three-dimensional geologic model. We found that rock uplift and deformation concentrated within individual Pacific Plate lithotectonic blocks in the SCM. Since 4 Ma, maximum principal strain computed for the more deformed block adjacent to the fault exceeded that computed for the less deformed block by at least 375%, and cumulative uplift has been more spatially extensive and higher in magnitude. We attribute the difference in uplift and deformation between the two blocks primarily to contrasts in lithotectonic structure, which resulted from diverging geologic histories along the evolving plate boundary.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3