Low-δ18O A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume

Author:

Xu Jian12,Xia Xiao-Ping12ORCID,Wang Qiang12,Spencer Christopher J.3,He Bin12,Lai Chun-Kit4

Affiliation:

1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China

3. Department of Geological Sciences and Geological Engineering, Queen's University, Kingston, Ontario, Canada

4. Faculty of Science, Universiti Brunei Darussalam, Gadong BE141O, Brunei Darussalam

Abstract

Abstract The mechanisms and processes by which subducted slab interacted with mantle plume remain controversial, as direct observation of such interaction is difficult to impossible. Compositional heterogeneity of large igneous provinces (LIPs) additionally makes plume-slab interaction hard to detect. Oxygen isotopes are sensitive enough to trace the source of magmas. Here we provide evidence for plume-slab interaction mainly based on in situ zircon Hf-O isotope analyses, as well as whole-rock elemental and Sr-Nd-Hf isotope analyses, on the Late Permian and Early Triassic A-type granites on the margin of the Emeishan LIP in SW China. These granites show typical A-type geochemical characters, such as high total alkali (7.93–9.68 wt%) and field strength element (HFSE, e.g., Zr and Nb) contents, and high FeOT/(FeOT+MgO) (0.87–0.98) and Ga/Al (3.67–5.06) values. The Late Permian (ca. 259 Ma) and Early Triassic (ca. 248 Ma) granites show high Nb/Th (>3.0) and low Y/Nb (<1.2) and Yb/Ta (<2.0) ratios similar to the oceanic island basalts and have near-zero εNd(t) (−0.83 to −0.13 and −0.15 to +0.16, respectively) and depleted εHf(t) (+2.71 to +3.39 and +2.62 to +3.55, respectively). In situ zircon O-Hf analyses yielded anomalously low δ18O (0.2–2.0‰ and 3.2–4.8‰, respectively) and positive εHf(t) (1.6–7.0 and 3.9–8.8, respectively), suggesting varying proportions of hydrothermally altered oceanic crust in their source region. Our results imply that significant amounts of altered Paleotethyan oceanic crust have been subducted in the upper mantle beneath the western South China Block. The nearby rising Emeishan mantle plume may have rapidly entrained and incorporated these oceanic crustal materials to the shallow mantle so that their low-δ18O isotope feature was preserved. Subsequent decompression-related partial melting of this hybrid source formed parental rocks of the low-δ18O A-type granites. Our findings also suggest that LIPs could obtain their compositional (especially oxygen isotope) diversity through the interaction between the subducting slab and rising mantle plume.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3