Geodynamic controls in the southernmost Northern Andes magmatic arc: Trace elements and Hf-O isotopic systematics in forearc detrital zircon

Author:

Witt César1,Poujol Marc2,Chiaradia Massimo3,Villagomez Diego4,Seyler Monique1,Averbuch Olivier1,Bouden Nordine5

Affiliation:

1. 1Lille University, Centre National de la Recherche Scientifique (CNRS), Littoral Côte d'Opale University, Institut de Recherche pour le Développement (IRD), UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 59000 Lille, France

2. 2University of Rennes, CNRS, Géosciences Rennes, UMR 6118, F35000 Rennes, France

3. 3Department of Earth Sciences, University of Geneva, CH-1205 Geneva, Switzerland

4. 4Tectonic Analysis Ltd., Chestnut House, Burton Park, Duncton, West Sussex GU28 0LH, UK

5. 5Centre de Recherches Pétrographiques et Géochimiques (CRPG), Université de Lorraine, 15 Rue Notre Dame des Pauvres, BP 20, 54 501 Vandœuvre-lès-Nancy, France

Abstract

U-Pb dating of single detrital zircon grains by laser ablation−inductively coupled plasma−mass spectrometry (LA-ICP-MS) paired with Hf and O isotopic and trace-element analyses provide first-order indicators of the Late Cretaceous−Cenozoic evolution of the southern Ecuadorian magmatic arc. Detrital zircon U-Pb ages define significant clusters that are tentatively interpreted as intense arc magmatism at ca. 72 Ma, ca. 60 Ma, and ca. 43 Ma. A major accretionary event in the Late Cretaceous (75−65 Ma) is marked by a broad range of zircon isotopic values (εHf[t] > 20 and δ18O > 8‰) that suggest melting of both the lower and upper crust (most likely of continental affinity) as well as enriched mantle components. Highly fractionated signatures in trace-element patterns and Eu/Eu* combined with mantle-like δ18O and juvenile εHf values characterize zircons from 60 to 45 Ma, suggesting that the Late Cretaceous−middle Eocene arc originated from an enriched mantle and likely reflects the persistence of overthickened crust previously attributed to the main Late Cretaceous accretionary period. Subsequently, negative shifts in εHf(t) isotopic composition from 45 to 30 Ma are paired with mantle-like δ18O values as well as decreases in U/Yb and Eu/Eu*. These signatures could be attributed to magma emplacement in a thinner crust and the existence of a broad extensional magmatic arc extending from the current forearc toward areas near the craton; however, other scenarios cannot be excluded. This event was characterized by enriched mantle melt sources with residence times pointing to known crustal events (Sunsás) in the Amazonian craton. From 30 to 10 Ma, the isotopic record slightly evolved toward a depleted mantle signature with a substantial increase in fractionation. Our results combined with previously published isotopic records from detrital zircon grains found in modern rivers suggest that, for at least the last 30 m.y., the southernmost Northern Andes magmatic arc has been segmented, with the emplacement of juvenile magmas to the north and more enriched magmas related to the recycling of ancient continental crust and/or subducted sediments to the south—aspects found in other Northern Andes settings in which the continental arc was constructed in both oceanic and continental crust.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3