Middle Miocene climate–carbon cycle dynamics: Keys for understanding future trends on a warmer Earth?

Author:

Holbourn Ann1,Kuhnt Wolfgang1,Kochhann Karlos G.D.2,Matsuzaki Kenji M.3,Andersen Nils4

Affiliation:

1. Institute of Geosciences, Christian-Albrechts-University, Kiel D-24118 Germany

2. Institute of Geosciences, Christian-Albrechts-University, Kiel D-24118 Germany, and Geology Graduate Program and Technological Institute for Paleoceanography and Climate Change (itt OCEANEON), Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93.022-750, Brazil

3. Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan, and Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

4. Leibniz Laboratory for Radiometric Dating and Stable Isotope Research, Christian-Albrechts-University, Kiel D-24118, Germany

Abstract

ABSTRACT The late early to middle Miocene period (18–12.7 Ma) was marked by profound environmental change, as Earth entered into the warmest climate phase of the Neogene (Miocene climate optimum) and then transitioned to a much colder mode with development of permanent ice sheets on Antarctica. Integration of high-resolution benthic foraminiferal isotope records in well-preserved sedimentary successions from the Pacific, Southern, and Indian Oceans provides a long-term perspective with which to assess relationships among climate change, ocean circulation, and carbon cycle dynamics during these successive climate reversals. Fundamentally different modes of ocean circulation and carbon cycling prevailed on an almost ice-free Earth during the Miocene climate optimum (ca. 16.9–14.7 Ma). Comparison of δ13C profiles revealed a marked decrease in ocean stratification and in the strength of the meridional overturning circulation during the Miocene climate optimum. We speculate that labile polar ice sheets, weaker Southern Hemisphere westerlies, higher sea level, and more acidic, oxygen-depleted oceans promoted shelf-basin partitioning of carbonate deposition and a weaker meridional overturning circulation, reducing the sequestration efficiency of the biological pump. X-ray fluorescence scanning data additionally revealed that 100 k.y. eccentricity-paced transient hyperthermal events coincided with intense episodes of deep-water acidification and deoxygenation. The in-phase coherence of δ18O and δ13C at the eccentricity band further suggests that orbitally paced processes such as remineralization of organic carbon from the deep-ocean dissolved organic carbon pool and/or weathering-induced carbon and nutrient fluxes from tropical monsoonal regions to the ocean contributed to the high amplitude variability of the marine carbon cycle. Stepwise global cooling and ice-sheet expansion during the middle Miocene climate transition (ca. 14.7–13.8 Ma) were associated with dampening of astronomically driven climate cycles and progressive steepening of the δ13C gradient between intermediate and deep waters, indicating intensification and vertical expansion of ocean meridional overturning circulation following the end of the Miocene climate optimum. Together, these results underline the crucial role of the marine carbon cycle and low-latitude processes in driving climate dynamics on an almost ice-free Earth.

Publisher

Geological Society of America

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3