Influence of multistage hydrothermal fluids on dolomite reservoirs: A case study from the Lower Ordovician Yeli-Liangjiashan Formation in the Chengdao-Zhuanghai area, Jiyang subbasin, Bohai Bay Basin, China

Author:

Sheng Kai1,Wang Yanzhong1,Cao Yingchang12,Wang Shuping3,Wang Yongshi4,Ma Shuai4,Du Yujie1

Affiliation:

1. 1School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China

2. 2Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

3. 3Petroleum Industry Training Service, China University of Petroleum (East China), Qingdao 266580, China

4. 4Shengli Oilfield Company, SINOPEC, Dongying 257001, China

Abstract

It remains controversial whether the influence of hydrothermal fluids on dolomite reservoirs is dominated by dissolution or precipitation. In this study, the influence of multistage hydrothermal fluids on the dolomite reservoirs of the Lower Ordovician Yeli-Liangjiashan Formation in the Chengdao-Zhuanghai area was investigated based on petrographic observations and geochemical analyses, with an emphasis on the temporal relationships among dolomitization, pore formation, and multistage hydrothermal fluid activities determined by in situ U-Pb dating. The δ18O, δ13C, and 87Sr/86Sr data indicate that the genesis of pre-hydrothermal dolomites and the earliest-formed dolomite cement (Cd1) closest to the edges of pores were related to coeval seawater. The U-Pb age of pre-hydrothermal dolomites is 427 ± 11 Ma, representing the time when early dolomitization occurred. The original pore formation predates the precipitation of Cd1 with a U-Pb age of 391 ± 12 Ma. Stage I and stage II hydrothermal fluids were derived from the Precambrian basement and the mantle, respectively, as evidenced by differences in δ18Ofluid values and rare earth element characteristics. Stage I and II hydrothermal fluids occurred at 161 ± 12 Ma and 81 ± 16 Ma, respectively. Therefore, early dolomitization and pore formation are not correlated with the two stages of hydrothermal fluids. Stage II hydrothermal fluids contained a relatively higher amount of H2S than stage I hydrothermal fluids. H2S-related dissolution caused by stage II hydrothermal fluids mainly occurred in the dolomite reservoirs adjacent to major faults, and H2S was gradually consumed as the distance from the major faults increased. The two stages of hydrothermal minerals successively filled most of the spaces in pores and fractures. The influence of multistage hydrothermal fluids on dolomite reservoirs was found to be dominated by precipitation.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3