A 3 b.y. record of a biotic influence on terrestrial weathering

Author:

Beaty Brian J.1,Planavsky Noah J.1

Affiliation:

1. Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut 06511, USA

Abstract

Abstract Organic acids secreted by plants and microorganisms are ubiquitous in modern soils. These acids possess a particularly strong binding affinity for aluminum, accelerating its release from mineral surfaces and driving its preferential loss relative to immobile elements such as titanium. Aluminum-titanium (Al-Ti) decoupling in ancient soils may therefore serve as a tracer of a biotic influence on terrestrial weathering in Earth’s past. To explore this idea, we used a mass balance approach to quantify Al mobility in 33 definitive and chronologically well-constrained paleosols spanning the Archean to Miocene. We estimated expected Al release for a given weathering intensity under abiotic conditions using previously established experimental relationships between the relative losses of Al and magnesium (Mg), a mobile element with a much lower organic acid binding affinity. We report Al release likely attributable to organic acid weathering in all paleosols, with net loss in 13, net gain in 16, and a balance between loss and gain in four. This provides a new line of support for a significant terrestrial biosphere as far back as the mid-Archean. Interestingly, there is no statistically significant change in Al mobility across major transitions such as the Great Oxidation Event or the Paleozoic spread of vascular plants. This controversially suggests that localized organic acid weathering, at least within the surface environments captured by the paleosol record, may have been as common on early Earth as it is today.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3