Calcite-aragonite seas as a driver of echinoderm evolution? Experimental insight and deep-time decoupling

Author:

Cole Selina R.12ORCID,Wright David F.12,Thompson Jeffrey R.34

Affiliation:

1. 1Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, Oklahoma 73072, USA

2. 2School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, Oklahoma 73019, USA

3. 3School of Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK

4. 4School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, Southampton SO14 3ZH, UK

Abstract

Abstract Seawater magnesium (Mg) and calcium (Ca) have undergone secular fluctuations throughout the Phanerozoic, controlling whether the dominant calcium carbonate precipitant is calcite or aragonite + high-Mg calcite. Although these oscillations in seawater Mg/Ca ratios have been implicated as an important control on Phanerozoic diversification of calcifying marine organisms, determining the degree to which Mg/Ca ratios affected different clades requires integration of experimental data with historical patterns of biodiversity from the fossil record. We explore short-term and long-term responses of echinoderms to shifting calcite-aragonite seas by combining experimental and deep-time biodiversity investigations. While experimental results support a strong relationship between Mg/Ca ratios and short-term echinoderm regeneration rates, patterns of Phanerozoic echinoderm diversification dynamics show no correspondence with Mg/Ca ratios or calcite-aragonite sea transitions. This decoupling between short- and long-term responses of echinoderms to seawater Mg/Ca ratios suggests echinoderms were relatively unaffected by seawater chemistry throughout their evolutionary history, possibly due to their ability to alter skeletal Mg fractionation and/or adapt to gradual shifts in seawater chemistry. Notably, our results indicate a strict uniformitarian extrapolation of experimental results over geological time scales may not be appropriate for many calcifying marine invertebrates. Instead, the effect of seawater Mg/Ca ratios should be evaluated for individual clades using both experimental and deep-time biodiversity data in a time series.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3