Sponge-rich sediment recycling in a Paleozoic continental arc driven by mélange melting

Author:

Liu Huichuan12,Nielsen Sune G.34,Zhu Guangyou5

Affiliation:

1. 1State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

2. 2College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China

3. 3NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

4. 4Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

5. 5Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China

Abstract

Abstract Slab material transfer processes in continental arcs can be challenging to decipher because magmas are often characterized by significant contributions from continental material. In this study, we identified a Prototethyan continental arc (419–418 Ma) that is now located in the Dazhonghe area of the southeast Tibetan Plateau, which, based on Sr-Nd-Hf-O-Si isotope relationships, implies no detectable continental material contributions. The Dazhonghe arc rocks display much lower δ30Si values than modern arc rocks and average mantle; this is best explained by subduction of sponge-rich marine sediments, which are thought to have been the dominant marine organisms during the Neoproterozoic and early Paleozoic. Our mixing calculations reveal that only bulk mixing among sponge-rich sediments, altered oceanic crust (AOC), and the depleted mantle would be capable of accounting for all the Sr-Nd-Hf-O-Si isotope compositions. This finding implies that the Dazhonghe arc magmas were generated by melting of a mélange that formed at the slab-mantle interface. The Dazhonghe continental arc is the first for which mélange melting has been confirmed.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3