E/I-corrected inclination shallowing in Cenozoic redbeds from the northern Tarim Basin, NW China: Possible causes and paleogeographic implications

Author:

Zhang Zhiliang12ORCID,Shen Bai1,Sun Jimin2,Ren Zhikun1

Affiliation:

1. Institute of Geology, China Earthquake Administration, Beijing 100029, China

2. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Abstract Because of their widespread occurrence and ability to carry stable remanence, continental redbeds in central Asia are frequently used in paleomagnetic studies. However, the paleomagnetic inclinations recorded by redbeds are much shallower than the expected values, as redbeds are usually subjected to inclination shallowing. To recognize and correct the inclinations recorded by the Cenozoic redbeds, the paleomagnetic data that were used for magnetostratigraphic studies in the Kuqa Depression, northern Tarim Basin, are reanalyzed in this study. The mean inclinations of the four groups of samples (Eocene, Oligocene, Miocene, and Pliocene) are systematically ~20° shallower than the expected values calculated from the apparent polar wander paths (APWPs) of Eurasia, indicating the presence of inclination shallowing. We apply the elongation/inclination (E/I) method to correct the inclination shallowing. The mean inclinations of the Eocene, Oligocene, Miocene, and Pliocene sediments are corrected from 40.5° to 63.1°, 41.0° to 63.8°, 42.0° to 63.8°, and 44.7° to 63.2°, within 95% confidence limits between 55.1° and 71.6°, 53.7° and 70.4°, 51.5° and 72.7°, and 52.2° and 71.3°, respectively, which are indistinguishable from the expected inclination values. Our results suggest that inclination shallowing in the redbeds of central Asia can be reasonably corrected using the E/I method, and sedimentary processes such as compaction and/or imbrication in the very early stage of burial are important causes for inclination shallowing. Paleolatitudes calculated from the E/I-corrected inclinations show that the Tarim Basin should have reached or been at least close to its current latitude since the Cretaceous. The Cenozoic crustal shortening estimate of the northern Tarim Basin is not detectible for paleomagnetic study.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3