Three-dimensional mineral dendrites reveal a nonclassical crystallization pathway

Author:

Hou Zhaoliang1ORCID,Woś Dawid2,Tschegg Cornelius3,Rogowitz Anna14,Rice A. Hugh N.1,Nasdala Lutz5,Fusseis Florian6,Szymczak Piotr2,Grasemann Bernhard1

Affiliation:

1. 1Department of Geology, University of Vienna, Vienna 1090, Austria

2. 2Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw 02-093, Poland

3. 3Glock Health, Science and Research GmbH, Deutsch-Wagram 2232, Austria

4. 4Institute for Earth Sciences, University of Graz, Graz 8010, Austria

5. 5Institute of Mineralogy and Crystallography, University of Vienna, Vienna 1090, Austria

6. 6School of Geosciences, University of Edinburgh, Edinburgh EH9 3FE, UK

Abstract

Abstract Manganese (Mn) dendrites are a common type of mineral dendrite that typically forms two-dimensional structures on rock surfaces. Three-dimensional (3-D) Mn dendrites in rocks have rarely been reported, and so their growth implications have largely escaped attention. Here, we combined high-resolution X-ray and electron-based data with numerical modeling to give the first detailed description of natural 3-D Mn dendrites (in clinoptilolite tuffs) and elucidate their growth dynamics. Our data show that 3-D dendrite growth occurred by accretion of Mn-oxide nanoparticles formed when Mn-bearing fluids mixed with oxygenated pore water. The geometry of the resulting structures is sensitive to ion concentrations, the volume of infiltrating fluid, and the number of fluid pulses; thus, 3-D dendrites record the hydrogeochemical rock history.

Publisher

Geological Society of America

Subject

Geology

Reference29 articles.

1. Skeletal quartz and dendritic biotite: Witnesses of primary disequilibrium growth textures in an alkali-feldspar granite;Barbey;Lithos,2019

2. Application of zeolites in agriculture and other potential uses: A review;Cataldo;Agronomy (Basel),2021

3. Structure and growth mechanism of mineral dendrites;Chopard;Nature,1991

4. Crystallization by particle attachment in synthetic, biogenic, and geologic environments;De Yoreo;Science,2015

5. Disequilibrium silicate mineral textures: Fractal and non-fractal features;Fowler;Nature,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3