Two-stage crust-mantle interactions from oceanic subduction to post-collisional extension in the northern margin of the North China Craton: Insights from Paleozoic to Mesozoic magmatism

Author:

Zhang Ying-Shuai1,Zhang Yong-Mei12,Gu Xue-Xiang123,Wang Jia-Lin2,Yao Bo1,Sui Hai-Peng1

Affiliation:

1. 1School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

2. 2State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

3. 3National 305 Project Office, Urumqi 830000, Xinjiang, China

Abstract

The northern margin of the North China Craton experienced prolonged tectono-magmatic evolution during the late Paleozoic−early Mesozoic in response to the southward subduction and closure of the Paleo-Asian Ocean. However, details about the subduction process and the timing of the tectonic transition from subduction to post-collision are still poorly constrained. Here, we identify two-stage crust-mantle interactions in the Wulashan area and report new geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopic data for magmatic rocks that record such processes following the subduction and closure of the Paleo-Asian Ocean. The early Carboniferous Xiguanjing pluton features a bimodal suite of gabbro (ca. 333 Ma) and syenogranite (ca. 331 Ma). The gabbros have arc-like geochemical affinities, with low Nb/La (0.31−0.40) and La/Ba (0.04−0.09) ratios, and variable Rb/Y (1.22−2.94) ratios, as well as enriched, mantle-like Sr-Nd-Pb (87Sr/86Sri = 0.7046−0.7047; εNd(t) = −3.8 to −3.5; 206Pb/204Pbi = 17.078−17.141) and enriched to depleted Hf (εHf(t) = −4.5 to +6.2) isotopic values. Such geochemical signatures indicate that they were derived from partial melting of the subcontinental lithospheric mantle that was metasomatized by slab-derived fluids, with minor involvement of asthenospheric components. In contrast, the contemporaneous syenogranites are characterized by lower negative εNd(t) (−13.5 to −12.1) and εHf(t) values (−16.3 to −8.2), which suggests that they were formed by partial melting of the lower crust. Late Triassic Shadegai and Xishadegai plutons are mainly composed of enclave-bearing syenogranite, and both mafic microgranular enclaves and syenogranites crystallized at ca. 233−231 Ma. The mafic microgranular enclaves have geochemical features similar to those of the early Carboniferous gabbros, and also have moderately enriched isotopic compositions (εNd(t) = −9.7 to −8.4; εHf(t) = −9.2 to −0.3), which suggests that they originated from interaction between mantle-derived magma and overlying crust-derived magma, with minor additions of asthenospheric melts in their sources. Field and petrological observations, coupled with the similar ages of the host granites and mafic microgranular enclaves, suggest a magmatic mingling process. Isotopic mixing models suggest that minor amounts (∼10%−20%) of lower crustal materials were mixed during the formation of the mafic microgranular enclaves. The host syenogranites display calc-alkaline to alkalic and metaluminous to weakly peraluminous compositions, and negative εNd(t) (−15.0 to −12.1) and εHf(t) values (−16.4 to −9.8), which indicates that they were mainly derived from partial melting of the lower crust and experienced the injection of deep mantle-derived magmas. Our new data, along with previously published data for magmatic rocks in the northern margin of the North China Craton, suggest that the early Carboniferous bimodal intrusive rocks formed in a localized back-arc extensional regime that was probably triggered by slab rollback of the Paleo-Asian Ocean. However, the Late Triassic plutons formed in a post-collisional extensional regime in response to slab breakoff or lithospheric delamination. Temporal variations of Nd-Hf isotopes for the magmatism in the northern margin of the North China Craton suggest that tectonic switching from advancing to retreating subduction to post-collisional extension occurred during the late Paleozoic to early Mesozoic. We propose that a tectonic transition from subduction to post-collisional extension may have occurred during the Early−Middle Triassic, marking the final closure of the Paleo-Asian Ocean, which most likely took place at ca. 250−235 Ma.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3