U-Pb and fission-track data from zircon and apatite resolve latest- and post-Alleghanian thermal histories along the Fall Line of the Atlantic margin of the southeastern United States

Author:

Craddock William H.1ORCID,O'Sullivan Paul B.2,McAleer Ryan J.3

Affiliation:

1. 1Geology, Energy, and Minerals Science Center, U.S. Geological Survey, Reston, Virginia 20192, USA

2. 2GeoSep Services, Inc., Moscow, Idaho 83843, USA

3. 3Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, Virginia 20192, USA

Abstract

Abstract Although the Atlantic continental margin of the eastern United States is an archetypal passive margin, episodes of rejuvenation following continental breakup are increasingly well documented. To better constrain this history of rejuvenation along the southern portion of this continental margin, we present zircon U-Pb (ZUPb) age, zircon fission-track (ZFT) age, apatite U-Pb (AUPb) age, and apatite fission-track (AFT) age and length data from six bedrock samples. The samples were collected along the boundary between the exposed Appalachian hinterland (Piedmont province) and the updip limit of passive margin strata (Coastal Plain province). The samples were collected from central Virginia southward to the South Carolina–Georgia border. ZUPb age distributions are generally consistent with geologic mapping in each of the sample areas. The AUPb data are highly discordant owing to high common-Pb abundances, but for two plutons at the northern and southern ends of the sample area, they define a discordia regression line that indicates substantial Permo-Triassic exhumation-driven cooling. ZFT age distributions are highly dispersed but define central values ranging from Permian to Jurassic. AFT data mostly appear to define a singular underlying cooling age, generally approximately Jurassic or Early Cretaceous. Apatite fission tracks are moderately long (mean lengths in the range of ~13.5 µm), however track lengths for one sample in central North Carolina are shorter (~12.5 µm). To interpret the post-breakup thermal history, we present inverse models of time-temperature history for the five plutonic samples. The models show a history of (1) rapid cooling (>10 °C/m.y.) from deep-crustal to near-surface temperatures by the Triassic, (2) hundreds of degrees of Triassic reheating, (3) Jurassic–Early Cretaceous cooling (at rates of 1–10 °C/m.y.), and (4) slow Late Cretaceous–Cenozoic cooling (~1 °C/m.y.). An additional suite of forward models is presented to further evaluate the magnitude of maximum Triassic reheating at one sample site that is particularly well constrained by thermal maturity data. The model results and geologic reasoning suggest that the inverse models may overestimate Triassic paleotemperatures but that other aspects of the inverse modeling are robust. Overall, this thermal history can be reconciled with several aspects of the lithostratigraphy of distal parts of the continental margin, including the lack of Jurassic–earliest Cretaceous strata beneath the southern Atlantic coastal plain and Cretaceous–Cenozoic grain-size trends.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference81 articles.

1. Lithostratigraphic-seismic evaluation of hydrocarbon potential, North Carolina coastal and continental margins: Interim report, year 2:;Almy,1987

2. Subdivision and regional stratigraphy of the pre–Punta Gorda rocks (lowermost Cretaceous–Jurassic?) in South Florida;Applegate;Gulf Coast Association of Geological Societies Transactions,1981

3. Spatially variable syn- and post-Alleghanian exhumation of the central Appalachian Mountains from zircon (U-Th)/He thermochronology;Basler;Geosphere,2021

4. Post-Alleghanian unroofing history of the Appalachian Basin, Pennsylvania, from apatite fission track analysis and thermal models;Blackmer;Tectonics,1994

5. Mesozoic-Cenozoic unroofing of the southern Appalachian Basin: Apatite fission track evidence from Middle Pennsylvanian sandstones;Boettcher;The Journal of Geology,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3