In situ U-Pb dating of carbonate veins in Cambrian shales constrains fluid flow and hydrocarbon evolution at the southeastern margin of the Upper Yangtze platform, southwestern China

Author:

Fan Qingqing123,Liu Dadong123,Du Wei34,Li Yiming12,Liang Feng5,Zhao Fuping34,Feng Xia34,Chen Yi34,Zhang Ziya123,Zhang Yuxiang6,Zhang Chen7

Affiliation:

1. 1National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China

2. 2Unconventional Petroleum Research Institute, China University of Petroleum, Beijing 102249, China

3. 3Key Laboratory of Unconventional Natural Gas Evaluation and Development in Complex Tectonic Areas, Ministry of Natural Resources, Guiyang 550004, China

4. 4Guizhou Engineering Research Institute of Oil & Gas Exploration and Development, Guiyang 550004, China

5. 5PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China

6. 6PetroChina Coalbed Methane Company Limited, Beijing 100028, China

7. 7State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China

Abstract

Fluid flow in sedimentary basins not only impacts redistribution of the geothermal cycle and precipitation of ore deposits, but also exerts control on hydrocarbon migration and accumulation. However, reconstructing the history of fluid flow in basins that have experienced multiple tectonic deformation events is exceedingly difficult. Here, we examined petrography, in situ U-Pb geochronology, and rare earth element (REE) and C-O isotope geochemistry, as well as fluid inclusion microthermometry of fracture fillings within the Cambrian Niutitang Formation shales at the southeastern margin of the Upper Yangtze platform, southwestern China. The results show that four main fluid flow pulses are identified based on cathodoluminescence images, U-Pb ages, and geochemical data, namely, 446−428 Ma (fibrous calcite and barytocalcite), 343−329 Ma (calcite I), 113 Ma (calcite II), and 63 Ma (calcite III). The fibrous calcite (ca. 446 Ma) and barytocalcite (ca. 428 Ma) veins, corresponding to the late Caledonian Orogeny, show significantly positive Eu-Y anomalies, negative Ce anomalies, and enrichment in heavy REE, similar to their host rocks, suggesting that the mineral-forming fluids were derived mainly from dissolution of the host rocks. An abundance of bitumen inclusions with homogenization temperatures (Th) of 93.1−137.4 °C and high salinities (5−8 wt%) indicate that the first fluid flow pulse occurred during the oil generation stage in a closed fluid system. Calcite I (ca. 343−329 Ma) exhibits REE depletion and high Y/Ho ratios, a low fluid inclusion salinity (2−10 wt%) with Th = 78.4−125.8 °C, and C-O isotopic compositions similar to the underlying marine carbonates. This suggests that calcite I formed in an open fluid system, which was related to the transition from compression to extension during the Hercynian Orogeny. The pre-existing faults were reactivated and opened, resulting in the leakage and reconstruction of hydrocarbon reservoirs. Calcite II (ca. 113.4 Ma) has similar REE+Y patterns and C-O isotopic compositions to the host rocks. It contains abundant single-phase hydrocarbon gas (CH4) inclusions with high Th (164.1−211.1 °C) and salinity (6−14 wt%) values, indicating that the third phase fluid was derived largely from the host rocks and migrated during the early Yanshanian Orogeny. Lastly, calcite III (ca. 62.7 Ma) exhibits extremely low REE concentrations, low δ13CPDB [Peedee belemnite] values (−6.74‰), and low fluid inclusion salinities (0.3−7.0 wt%) with Th = 61.9−97.1 °C, suggesting that the fourth fluid flow pulse was affected by meteoric water to some extent. This can be interpreted to represent an open fluid system, which caused gas dispersion in the Niutitang Formation shales. Our findings provide important references for reconstructing the history of fluid flow in tectonically complex basins worldwide.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3