Looking upstream with clumped and triple oxygen isotopes of estuarine oyster shells in the early Eocene of California, USA

Author:

Kelson Julia R.1,Petersen Sierra V.1,Niemi Nathan A.1,Passey Benjamin H.1,Curley Allison N.1

Affiliation:

1. Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, Ann Arbor, Michigan 48109, USA

Abstract

Abstract The δ18O of carbonate minerals that formed at Earth's surface is widely used to investigate paleoclimates and paleo-elevations. However, a multitude of hydrologic processes can affect δ18O values, including mixing, evaporation, distillation of parent waters, and carbonate growth temperatures. We combined traditional carbon and oxygen isotope analyses with clumped (Δ47) and triple oxygen isotopes (Δ′17O) analyses in oyster shells (Acutostrea idriaensis) of the Goler Formation in southern California (USA) to obtain insights into surface temperatures and δ18O values of meteoric waters during the early Eocene hothouse climate. The Δ47-derived temperatures ranged from 9 °C to 20 °C. We found a correlation between the δ18O of growth water (δ18Ogw) (calculated using Δ47 temperatures and δ18O of carbonate) and the δ13C values of shells. The Δ′17O values of shell growth waters (0.006‰–0.013‰ relative to Vienna standard mean ocean water–standard light Antarctic precipitation [VSMOW-SLAP]) calculated from Δ′17O of carbonate (−0.087‰ to −0.078‰ VSMOW-SLAP) were lower than typical meteoric waters. These isotopic compositions are consistent with oyster habitation in an estuary. We present a new triple oxygen isotope mixing model to estimate the δ18O value of freshwater supplying the estuary (δ18Ofw). The reconstructed δ18Ofw of −11.3‰ to −14.7‰ (VSMOW) is significantly lower than the δ18Ogw of −4.4‰ to −9.9‰ that would have been calculated using “only” Δ47 and δ18O values of carbonate. This δ18Ofw estimate supports paleogeographic reconstructions of a Paleogene river fed by high-elevation catchments of the paleo–southern Sierra Nevada. Our study highlights the potential for paired Δ47 and Δ′17O analyses to improve reconstructions of meteoric water δ18O, with implications for understanding ancient climates and elevations.

Publisher

Geological Society of America

Subject

Geology

Reference35 articles.

1. Magnetostratigraphy, mammalian biostratigraphy, and refined age assessment of the Goler Formation (Paleocene), California: Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O;Albright;Woodburne: Museum of Northern Arizona Bulletin,2010

2. Triple oxygen isotopes in the water cycle;Aron;Chemical Geology,2021

3. Diffusivity fractionations of H216O/H217O and H216O/H218O in air and their implications for isotope hydrology;Barkan;Rapid Communications in Mass Spectrometry,2007

4. Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith;Chapman;California: Geosphere,2012

5. Cox, B.F. , 1982, Stratigraphy, Sedimentology, and Structure of the Goler Formation (Paleocene), El Paso Mountains, California: Implications for Paleogene Tectonism on the Garlock Fault Zone [Ph.D. thesis]: Riverside, California, University of California–Riverside, 300 p.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3