Differentiation of an upper crustal magma reservoir via crystal-melt separation recorded in the San Gabriel pluton, central Chile

Author:

Payacán I.123ORCID,Gutiérrez F.4,Bachmann O.5,Parada M.Á.16

Affiliation:

1. 1Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago 8370450, Chile

2. 2Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago 7500994, Chile

3. 3Advanced Mining Technology Center, Universidad de Chile, Avenida Tupper 2007, Santiago 8370450, Chile

4. 4GeoExpedition, Las Palomas 25, Pirque, Santiago 9480000, Chile

5. 5Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland

6. 6Andean Geothermal Center of Excellence CEGA, Universidad de Chile, Plaza Ercilla 803, Santiago 8370450, Chile

Abstract

AbstractCrystal-melt separation has been invoked as a mechanism that generates compositional variabilities in magma reservoirs hosted within the Earth’s crust. However, the way phase separation occurs within such reservoirs is still debated. The San Gabriel pluton of central Chile is a composite pluton (12.82 ± 0.19 Ma) with wide textural/compositional variation (52–67 wt% SiO2) and presents a great natural laboratory for studying processes that occur in upper crustal magma reservoirs. Geochemical and geochronological data supported by numerical models reveals that shallow magma differentiation via crystalmelt separation occurred in magma with intermediate composition and generated high-silica magmas and cumulate residues that were redistributed within the reservoir.The pluton is composed of three units: (1) quartz-monzonites representing the main hosting unit, (2) a porphyritic monzogranite located at the lowest exposed levels, and (3) coarse-grained quartz-monzodiorites with cumulate textures at the middle level of the intrusive. Calculations of mass balance and thermodynamic modeling of major and trace elements indicate that <40 vol% of haplogranitic residual melt was extracted from the parental magma to generate quartz-monzonites, and 50–80 vol% was extracted to generate quartz-monzodiorites, which implies that both units represent crystal-rich residues. By contrast, the monzogranites are interpreted as a concentration of remobilized residual melts that followed 30–70 vol% fractionation from a mush with 0.4–0.55 of crystal fraction. The monzogranites represent the upper level of a pulse that stopped under a crystal-rich mush zone, probably leaving a mafic cumulate zone beneath the exposed pluton. This case study illustrates the role of the redistribution of residual silicic melts within shallow magma reservoirs.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3