Crustal evolution of a continental magmatic arc from subduction to collision: A case study in the Gangdese arc, southern Tibetan Plateau

Author:

Zhang Ze-Ming12ORCID,Ding Hui-Xia1,Palin Richard M.3,Dong Xin2,Tian Zuo-Lin2,Li Xiao-Wei1

Affiliation:

1. 1School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China

2. 2Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

3. 3Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK

Abstract

Abstract Magmatic arcs are the main environment where continental crust is created on the post-Archean Earth; however, how juvenile arc crust evolves into mature continental crust is still controversial. In this study, we report new bulk-rock major and trace elements, Sr-Nd isotopes, and zircon U-Pb ages and Hf isotopes from a large suite of granites collected from the eastern segment of the Gangdese arc, southern Tibetan Plateau, which record a complete history of arc crust evolution from Mesozoic subduction to Cenozoic collision. These new data show that Gangdese crust-derived granites generated during the subduction to collisional stages record significant geochemical changes with age, indicating that the bulk composition, lithological makeup, and thicknesses of the arc crust evolved over time. Here, we propose that the Gangdese arc had a thick juvenile crust with a small volume of ancient crustal components during late-stage subduction of the Neo-Tethys Ocean, a thin juvenile crust with heterogeneously distributed ancient crustal materials during early collision, and a thick juvenile crust with minor proportions of ancient rocks during late collision. This implies that the arc experienced episodes of crustal thickening during the Late Cretaceous and Eocene, interspersed by periods of thinning during the Paleocene and Miocene, and several discrete episodes of partial melting in the lower arc crust, and cycling or recycling of juvenile and ancient crustal materials within the arc crust and between the crust and mantle. We suggest that shallow subduction of the Neo-Tethys during the Late Cretaceous promoted tectonic thickening of the arc crust, partial melting of lower crust, and formation of high Sr/Y granites. After the onset of the Indo-Asian collision, breakoff of the subducted Neo-Tethyan oceanic slab during the Paleocene/early Eocene allowed thinning of the overlying arc crust and generation of granites derived from juvenile and ancient crustal sources. Continued underthrusting of the Indian continental crust and subsequent delamination of thickened lithospheric mantle led to thickening and thinning of the arc crust, respectively, and partial melting of thickened lower crust and generation of high Sr/Y granites during the Oligocene and Miocene. Using the Gangdese as an analogue for post-Archean continental margins, we suggest that the repeated thickening and thinning of arc crust, and associated multistage remelting of the lower arc crust, and material cycling or recycling within the crust and between the crust and mantle from subduction to collision are common processes that drive maturation of juvenile arc crust.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3