Tectonic burial of sedimentary rocks drives the building of juvenile crust of magmatic arc

Author:

Qin Sheng-Kai1,Zhang Ze-Ming12,Palin Richard M.3,Ding Hui-Xia2,Dong Xin1,Tian Zuo-Lin1

Affiliation:

1. 1Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 2School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

3. 3Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK

Abstract

Abstract Continental arcs grow primarily by addition of mantle-derived magmas, thus forming juvenile crust, although geophysical evidence, alongside field investigation of exhumed terranes, show that supracrustal rocks are common components of the lower portions of continental arcs. The mechanisms by which metasedimentary rocks are transported to the deep arc crusts and their contributions to the juvenile arc crusts are ambiguous. Here, we conduct a systematic petrological, geochronological, and geochemical study of pelitic migmatites within Late Cretaceous meta-gabbros from the lower crust of the eastern Gangdese arc, southern Tibet. Our results show that the pelitic migmatites were derived from the Late Carboniferous sedimentary rocks of the upper arc crust, have significantly enriched Sr-Nd-Hf-O isotopic compositions, and underwent Late Cretaceous (95–80 Ma) high-pressure granulite-facies metamorphism and partial melting at ~850 °C and 15 kbar to generate voluminous granitic melts. This indicates that the eastern Gangdese arc underwent significant crustal thickening and chemical differentiation during the final stages of subduction of the Neo-Tethys. We suggest that the metasedimentary rocks were transported into the lower crust of the Gangdese arc by underthrusting of arc crust and accretion of mantle-derived magma, and the deeply buried supracrustal rocks altered the petrological constitution and chemical compositions of juvenile lower arc crust, and assimilated the mantle- and juvenile crust-derived melts. We propose that tectonic burial of sedimentary rocks is a key mechanism driving the building and reworking of juvenile crust of magmatic arcs throughout most of geological time.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3