Mafic-ultramafic intrusion formed by multi-stage evolution of hydrous basaltic melts

Author:

Li Qi-Wei1,Zhao Jun-Hong1,Zhou Mei-Fu2,Gao Jian-Feng3

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

2. Department of Earth Sciences, University of Hong Kong, Hong Kong

3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Abstract

Abstract The magmatic processes beneath the active continental margins are very complicated and affect structures and compositions of the arc roots. Neoproterozoic igneous rocks are widely distributed around the margins of the Tarim Block in NW China. The Xingdier mafic-ultramafic intrusion is a composite body, located at the northern margin of the Tarim Block, and consists of gabbro, pyroxenite, and peridotite units. The gabbro unit has a secondary ion mass spectrometry zircon U-Pb age of 727 ± 5 Ma. Rocks from the Xingdier intrusion have a large range of MgO (12.9–32.8 wt%) and SiO2 (43.0–57.9 wt%), and low K2O + Na2O (0.11–2.25 wt%) contents. They have right inclined chondrite-normalized rare earth element patterns with (La/Yb)N ratios of 2.2–8.6. Their primitive mantle normalized trace element patterns show arc-affinity geochemical features characterized by enrichment in Rb, Ba, Th, U, and Pb and depletion in Nb, Ta, and Ti. They have variable initial 87Sr/86Sr ratios (0.7063–0.7093), εNd(t) values (−2.9 to −7.8), 206Pb/204Pb (17.08–17.80), 207Pb/204Pb (15.42–15.49), and 208Pb/204Pb ratios (37.48–38.05), forming an evolution trend from the peridotite unit to the gabbro and pyroxenite units. Clinopyroxene in the three units is chemically similar to those formed in hydrous magmas. The spinel inclusions in olivine from the peridotite unit show unmixing texture and have high Al contents and oxygen fugacity of ~FMQ+1. Therefore, the parental magma was probably derived from a lithospheric mantle enriched by slab-derived fluids. Rocks from the gabbro and peridotite units are proposed to have been derived from olivine-normative melts, whereas rocks from the pyroxenite unit are cumulates from the quartz-normative melts. Such contrasting parental magmas resulted from variable degrees of crustal contamination and fractional crystallization in the arc root.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3