First identification of a Cathaysian continental fragment beneath the Gagua Ridge, Philippine Sea, and its tectonic implications

Author:

Qian Shengping1,Zhang Xiaozhi1,Wu Jonny2,Lallemand Serge3,Nichols Alexander R.L.4,Huang Chiyue15,Miggins Daniel P.6,Zhou Huaiyang1

Affiliation:

1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

2. Department of Earth & Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA

3. Géosciences Montpellier, CNRS, Montpellier University, 34095 Montpellier cédex 5, France

4. School of Earth and Environment, University of Canterbury, Christchurch 8140, New Zealand

5. Department of Earth Sciences, National Cheng Kung University, 701 Tainan, Taiwan

6. College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA

Abstract

Abstract The tectonic history of the Philippine Sea plate is an essential piece in understanding the tectonic evolution of Southeast Asia, but it is still unclear and controversial. We present the first geochemical data obtained from lavas from the Gagua Ridge (GR) within the Philippine Sea. The GR lavas exhibit geochemical signatures typical of subduction-related arc magmatism. Plagioclase Ar-Ar ages of ca. 124–123 Ma and subduction-related geochemical signatures support the formation of GR lavas in the vicinity of an arc during the Early Cretaceous induced by subduction of the oceanic plate along East Asia. The ages of trapped zircon xenocrysts within the GR lavas cluster at 250 Ma, 0.75 Ga, and 2.45 Ga and match well the ages of zircons recovered from the Cathaysian block, southern China. Our results imply that the GR basement is partially composed of continental material that rifted away from the Eurasian margin during opening and spreading of the Huatung Basin. The depleted mantle wedge-derived magmas evolved and picked up the continental zircons during ascent. The youngest zircon ages and the GR lava Ar-Ar ages (ca. 124–123 Ma) presented in this study newly constrain an Early Cretaceous age for the Huatung Basin. Our study provides further evidence that the Huatung Basin is a remnant of a Mesozoic-aged ocean basin that dispersed from southern China during the Cretaceous. Transport of continental slivers by growth and closure of marginal seas along the East Asia margin may have been more prevalent than previously recognized.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3