Statistical Entropy Measures in C4.5 Trees

Author:

Arellano Aldo Ramirez1,Bory-Reyes Juan2,Hernandez-Simon Luis Manuel2

Affiliation:

1. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico

2. Escuela Superior de Ingeniería Mecánica y Eléctrica Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico

Abstract

The main goal of this article is to present a statistical study of decision tree learning algorithms based on the measures of different parametric entropies. Partial empirical evidence is presented to support the conjecture that the parameter adjusting of different entropy measures might bias the classification. Here, the receiver operating characteristic (ROC) curve analysis, precisely, the area under the ROC curve (AURC) gives the best criterion to evaluate decision trees based on parametric entropies. The authors emphasize that the improvement of the AURC relies on of the type of each dataset. The results support the hypothesis that parametric algorithms are useful for datasets with numeric and nominal, but not for mixed, attributes; thus, four hybrid approaches are proposed. The hybrid algorithm, which is based on Renyi entropy, is suitable for nominal, numeric, and mixed datasets. Moreover, it requires less time when the number of nodes is reduced, when the AURC is maintaining or increasing, thus it is preferable in large datasets.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the scaled Rényi entropy and application;Communications in Statistics - Theory and Methods;2024-01-16

2. Artificial Intelligence-Based System ‘SiMoniK’ for MSMEs;2023 IEEE 9th Information Technology International Seminar (ITIS);2023-10-18

3. Unraveling the Significance of the Classification Tree Algorithm in Machine Learning: A Literature Review;European Journal of Theoretical and Applied Sciences;2023-09-01

4. Examining the distance education process in terms of professional competencies of maritime students;Australian Journal of Maritime & Ocean Affairs;2023-06-14

5. A Two-Parameter Fractional Tsallis Decision Tree;Entropy;2022-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3