An Introduction to Principal Component Analysis and Its Applications

Author:

Chaudhari Vaibhav1ORCID,Dumka Ankur2

Affiliation:

1. Nutanix Technologies India Pvt. Ltd., Bengaluru, India

2. Department of Computer Science and Engineering, Women Institute of Technology, Dehradun, India & Department of Computer Science and Engineering, Graphic Era University (Deemed), Dehradun, India

Abstract

Huge datasets are progressively normal and are frequently hard to decipher. Principle component analysis (PCA) is used for reducing dimensions of huge datasets and thus used in expanding interpretability by minimizing information loss. This is achieved by making uncorrelated variables that successively maximize variance. PCA finds eigen values/eigen vectors, and the new factors are characterized by the current dataset, and thus making PCA a versatile data analysis technique. This chapter will focus on explaining the working of PCA with various mathematical proofs and derivations along with discussion on the advantages and disadvantages of it. This chapter lucidly explains the working of PCA in detail along with the various mathematical proofs and derivations.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An overview of face recognition methods;BIO Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3