A Multi-Objective Evolutionary Algorithm for Neuro-Locomotion of a Legged Robot With Malfunction Compensation

Author:

Saputra Azhar Aulia1,Kubota Naoyuki1

Affiliation:

1. Tokyo Metropolitan University, Japan

Abstract

Dynamic quadruped locomotion implies high-intensity integration toward environmental factors and requires considering the information from sensory feedback. The authors represent CPG-based locomotion model with sensorimotor coordination. They build an efficient integration between motor and sensory neurons that can generate dynamic behavior, especially in locomotion coordination during leg malfunction. They emphasize an optimization strategy to optimize the interconnection structure of CPG-based locomotion model. They use a multi-objective evolutionary algorithm to optimize the synaptic weight between motor–motor neurons and motor–sensory neurons. The applied cascade optimization is 1) dynamic gait pattern optimization using desired speed and torso oscillation as the fitness function and 2) malfunction compensation optimization using moving direction error and torso oscillation as the fitness evaluation. The proposed model has been applied to simulated and real middle-size quadruped robots. It showed the proposed optimization can generate a smooth transition during a robot's leg unction.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3