Thwarting Spam on Facebook

Author:

Jain Arti1ORCID,Gairola Reetika1,Jain Shikha1,Arora Anuja1ORCID

Affiliation:

1. Jaypee Institute of Information Technology, India

Abstract

Spam on the online social networks (OSNs) is evolving as a prominent problem for the users of these networks. Spammers often use certain techniques to deceive the OSN users for their own benefit. Facebook, one of the leading OSNs, is experiencing such crucial problems at an alarming rate. This chapter presents a methodology to segregate spam from legitimate posts using machine learning techniques: naïve Bayes (NB), support vector machine (SVM), and random forest (RF). The textual, image, and video features are used together, which wasn't considered by the earlier researchers. Then, 1.5 million posts and comments are extracted from archival and real-time Facebook data, which is then pre-processed using RStudio. A total of 30 features are identified, out of which 10 are the best informative for identification of spam vs. ham posts. The entire dataset is shuffled and divided into three ratios, out of which 80:20 ratio of training and testing dataset provides the best result. Also, RF classifier outperforms NB and SVM by achieving overall F-measure 89.4% on the combined feature set.

Publisher

IGI Global

Reference42 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3