Affiliation:
1. Department of P. G. Studies and Research in Computer Science, Kuvempu University, India
Abstract
This article presents a novel technique for retrieval of lung images from the collection of medical CT images. The proposed content-based medical image retrieval (CBMIR) technique uses an automated image segmentation technique called Delaunay triangulation (DT) in order to segment lung organ (region of interest) from the original medical image. The proposed method extracts novel and discriminant features from the segmented lung region instead of extracting novel features from the whole original image. For the extraction of shape features, the authors employ edge histogram descriptor (EHD) and geometric moments (GM), and for the extraction of texture features, the authors use gray-level co-occurrence matrix (GLCM) technique. The shape and texture features are combined to form the hybrid feature which is used for retrieval of similar lung images. The proposed method is evaluated using two benchmark datasets of lung CT images. The simulation results prove that the proposed CBMIR framework shows improved performance in terms of retrieval accuracy and retrieval time.