Layer-Wise Tumor Segmentation of Breast Images Using Convolutional Neural Networks

Author:

Krishnaraj Nishanth1,Mekala A. Mary2,M. Bhaskar1,Nersisson Ruban2ORCID,Joseph Raj Alex Noel3ORCID

Affiliation:

1. National Institute of Technology, Tiruchirappalli, India

2. Vellore Institute of Technology, Vellore, India

3. Shantou University, China

Abstract

Early prediction of cancer type has become very crucial. Breast cancer is common to women and it leads to life threatening. Several imaging techniques have been suggested for timely detection and treatment of breast cancer. More research findings have been done to accurately detect the breast cancer. Automated whole breast ultrasound (AWBUS) is a new breast imaging technology that can render the entire breast anatomy in 3-D volume. The tissue layers in the breast are segmented and the type of lesion in the breast tissue can be identified which is essential for cancer detection. In this chapter, a u-net convolutional neural network architecture is used to implement the segmentation of breast tissues from AWBUS images into the different layers, that is, epidermis, subcutaneous, and muscular layer. The architecture was trained and tested with the AWBUS dataset images. The performance of the proposed scheme was based on accuracy, loss and the F1 score of the neural network that was calculated for each layer of the breast tissue.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3