Machine Learning-Based Approaches in the Detection of Suicide From Social Media Comments

Author:

Ghosh Dipanwita1,Sing Mihir1,Adhikary Arpan2ORCID,Nayek Asit Kumar2

Affiliation:

1. Maulana Abul Kalam Azad University of Technology, West Bengal, India

2. Haldia Institute of Technology, India

Abstract

Suicidal tendencies have increased today due to nuclear organization of families and rapid urbanization around the world. Loneliness, aggression, and fast-moving daily lives make the youths and the aged persons depressed. Most of the time, they are involved in mutual relationships on social media. Social media posts and chats, thus, become an important resource from where we can find one's mental illness level and suicidal tendances. The most-used keywords are taken from an open database and are analyzed. ML algorithms like random forest, support vector classifier, and KNN are used to train and predict a person's suicide attempt. Out of these algorithms, SVC produces greater accuracy. To generate more accuracy, word sets shall be robust.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3