Resource Allocation Scheduling Algorithm Based on Incomplete Information Dynamic Game for Edge Computing

Author:

Wang Bo1ORCID,Li Mingchu2

Affiliation:

1. School of Software Technology, Dalian University of Technology, Dalian, China & School of Applied Technology, University of Science and Technology Liaoning, Anshan, China & Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China

2. School of Software Technology, Dalian University of Technology, Dalian, China & Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China

Abstract

With the advent of the 5G era, the demands for features such as low latency and high concurrency are becoming increasingly significant. These sophisticated new network applications and services require huge gaps in network transmission bandwidth, network transmission latency, and user experience, making cloud computing face many technical challenges in terms of applicability. In response to cloud computing's shortcomings, edge computing has come into its own. However, many factors affect task offloading and resource allocation in the edge computing environment, such as the task offload latency, energy consumption, smart device mobility, end-user power, and other issues. This paper proposes a dynamic multi-winner game model based on incomplete information to solve multi-end users' task offloading and edge resource allocation. First, based on the history of end-users storage in edge data centers, a hidden Markov model can predict other end-users' bid prices at time t. Based on these predicted auction prices, the model determines their bids. A dynamic multi-winner game model is used to solve the offload strategy that minimizes latency, energy consumption, cost, and to maximizes end-user satisfaction at the edge data center. Finally, the authors designed a resource allocation algorithm based on different priorities and task types to implement resource allocation in edge data centers. To ensure the prediction model's accuracy, the authors also use the expectation-maximization algorithm to learn the model parameters. Comparative experimental results show that the proposed model can better results in time delay, energy consumption, and cost.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3