Disease Classification Using ECG Signals Based on R-Peak Analysis With ABC and ANN

Author:

Lata Suman1ORCID,Kumar Rakesh1

Affiliation:

1. National Institute of Technical Teachers Training and Research, Chandigarh, India

Abstract

ECG feature extraction has an important role in identifying a number of cardiac diseases. Lots of work has been done in this field but the most important challenges faced in previous work are the selection of proper R-peaks and R-R intervals due to the lack of appropriate pre-processing steps like decomposition, smoothing, filtering, etc., and the optimization of the features for proper classification. In this article, DWT-based pre-processing and ABC is used for optimization of features which helps to achieve better classification accuracy. It is utilized for initial diagnosis of abnormalities. The signals are taken from MIT-BIH arrhythmia database for the analysis. The aim of the research is to classification of six diseases; Normal, Atrial, Paced, PVC, LBBB, RBBB with an ABC optimization algorithm and an ANN classification algorithm on the basis of the extracted features. Various parameters, like, FAR, FRR, and accuracy are measured for the execution. Comparative analysis is shown of the proposed and the existing work to depict the effectiveness of the work.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3