Analyzing Big Data Using Recent Machine Learning Techniques to Assist Consumers in Online Purchase Decision

Author:

Durugkar Santosh Ramkrishna1ORCID

Affiliation:

1. Independent Researcher, India

Abstract

Sentiments can be expressed in a variety of ways like angry, happy, sad, surprised, etc. Recent machine learning (ML) algorithms classify sentiments and assist customers in their purchase decision. Many organizations are predicting the possible correlation between growth of the business and customer satisfaction. On different social media platforms, customers give ‘ratings' to a specific product or service. ML helps in knowing the reasons and assists the businesses to improvise in the weaker sections. Natural language processing integrates data and applies “tokenization” to extract the tokens (words) from the datasets (feedbacks). A set of positive, negative, and neutral words and sentences can be compared to find the relevance. Naïve Bayes classifier, KNN classifier, etc. help knowing the trend and processes the large volume of data in minimal time. This approach helps increasing the predictive power of the model and tests remaining data. Bayesian factor robustness helps analyzing different attribute specifications from the large volume.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3