Predicting Medical Resources Required to be Dispatched After Earthquake and Flood, Using Historical Data and Machine Learning Techniques

Author:

Papadopoulos Homer1,Korakis Antonis1

Affiliation:

1. National Center for Scientific Research Demokritos, Agia Paraskevi, Greece

Abstract

This article presents a method to predict the medical resources required to be dispatched after large-scale disasters to satisfy the demand. The historical data of past incidents (earthquakes, floods) regarding the number of victims requested emergency medical services and hospitalisation, simulation tools, web services and machine learning techniques have been combined. The authors adopted a twofold approach: a) use of web services and simulation tools to predict the potential number of victims and b) use of historical data and self-trained algorithms to “learn” from these data and provide relative predictions. Comparing actual and predicted victims needed hospitalisation showed that the proposed models can predict the medical resources required to be dispatched with acceptable errors. The results are promoting the use of electronic platforms able to coordinate an emergency medical response since these platforms can collect big heterogeneous datasets necessary to optimise the performance of the suggested algorithms.

Publisher

IGI Global

Reference39 articles.

1. Cultural support for improvisation.;P.Agre;Proceedings of the Tenth National Conference on Artificial Intelligence,1992

2. Impacts of Match 2011 Earthquake, Tsunami and Fukushima Nuclear Accident in Japan

3. Social media: Major tool in disaster response.;C. D.Balana;Inquirer Technology,2012

4. Balfour, R. E. (2012). Next generation emergency management common operating picture software/systems (COPSS). In 2012 IEEE Systems, Applications and Technology Conference (LISAT), Long Island, NY, May 4.

5. Creating synthetic baseline populations

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3