Affiliation:
1. National Institute of Technical Teachers Training and Research, Chandigarh, India
Abstract
ECG feature extraction has an important role in identifying a number of cardiac diseases. Lots of work has been done in this field but the most important challenges faced in previous work are the selection of proper R-peaks and R-R intervals due to the lack of appropriate pre-processing steps like decomposition, smoothing, filtering, etc., and the optimization of the features for proper classification. In this article, DWT-based pre-processing and ABC is used for optimization of features which helps to achieve better classification accuracy. It is utilized for initial diagnosis of abnormalities. The signals are taken from MIT-BIH arrhythmia database for the analysis. The aim of the research is to classification of six diseases; Normal, Atrial, Paced, PVC, LBBB, RBBB with an ABC optimization algorithm and an ANN classification algorithm on the basis of the extracted features. Various parameters, like, FAR, FRR, and accuracy are measured for the execution. Comparative analysis is shown of the proposed and the existing work to depict the effectiveness of the work.
Subject
General Engineering,Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献