Malware Detection and Prevention System Based on Multi-Stage Rules

Author:

Alazab Ammar1,Hobbs Michael1,Abawajy Jemal1,Khraisat Ansam2

Affiliation:

1. School of Information Technology, Deakin University, Burwood, VIC, Australia

2. Ballarat University, Mt Helen, VIC, Australia

Abstract

The continuously rising Internet attacks pose severe challenges to develop an effective Intrusion Detection System (IDS) to detect known and unknown malicious attack. In order to address the problem of detecting known, unknown attacks and identify an attack grouped, the authors provide a new multi stage rules for detecting anomalies in multi-stage rules. The authors used the RIPPER for rule generation, which is capable to create rule sets more quickly and can determine the attack types with smaller numbers of rules. These rules would be efficient to apply for Signature Intrusion Detection System (SIDS) and Anomaly Intrusion Detection System (AIDS).

Publisher

IGI Global

Subject

Information Systems

Reference15 articles.

1. Web Malware that Targets Web Applications

2. Alazab, A., Alazab, M., Abawajy, J., & Hobbs, M. (2011). Web application protection against SQL injection attack. Paper presented at the ICITA 2011: Proceedings of the 7th International Conference on Information Technology and Applications.

3. Alazab, A., Hobbs, M., Abawajy, J., & Alazab, M. (2012). Using feature selection for intrusion detection system. In Proceedings of the 2012 International Symposium on Communications and Information Technologies (ISCIT).

4. Cohen, W. W., & Singer, Y. (1999). A simple, fast, and effective rule learner. In Proceedings of the National Conference on Artificial Intelligence.

5. Hunt, E. B. (1962). Concept learning: An information processing problem.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fake News Detection on English News Article's Title;2021 1st International Conference in Information and Computing Research (iCORE);2021-12

2. Hybrid Intrusion Detection System for Wireless Networks;Lecture Notes in Electrical Engineering;2021-07-22

3. Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine;Electronics;2020-01-17

4. Hybrid Analysis Technique to detect Advanced Persistent Threats;International Journal of Intelligent Information Technologies;2018-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3