Predicting Child Mortality With Diverse Regression Algorithms Using a Machine Learning Approach

Author:

Ashwini C.1,Bose S. Rubin1ORCID,Padmavathy M. S. Deepika1,Raj Calvin1,Ajay J. Chalwin1

Affiliation:

1. SRM Institute of Science and Technology, India

Abstract

This chapter uses machine learning methodologies to investigate the prediction of child mortality rates for ages 1-4 across diverse countries. Drawing upon a comprehensive review of global health data from organizations such as the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), which highlight the urgency and significance of accurate child mortality prediction, the authors analyze a dataset spanning from 1967 to 2019, containing 30,940 entries from countries worldwide. Regression algorithms, including XGBoost, CatBoost, Random Forest, AdaBoost, and DecisionTree Regressor, are employed to predict child mortality rates. Evaluation metrics such as R^2, adjusted R^2, mean absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE) are utilized to assess model performance. Additionally, Matplotlib and Seaborn use visualization techniques to illustrate the findings through pie charts and graphs. The analysis aims to identify the most effective algorithm for accurately forecasting child mortality rates, thereby contributing to advancing healthcare planning and intervention strategies to reduce child mortality globally.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3