Improving Live Augmented Reality With Neural Configuration Adaptation

Author:

Chen Ning1ORCID,Zhang Sheng1,Lu Sang Lu1

Affiliation:

1. Nanjing University, China

Abstract

Instead of relying on remote clouds, today's augmented reality (AR) applications send videos to nearby edge servers for analysis to optimize user's quality of experience (QoE). Lots of studies have been conducted to help adaptively choose the best video configuration, e.g., resolution and frame per second (fps). However, prior works only consider network bandwidth and ignores the video content itself. In this chapter, the authors design Cuttlefish, a system that generates video configuration decisions using reinforcement learning (RL) based on network condition as well as the video content. Cuttlefish does not rely on any pre-programmed models or specific assumptions on the environments. Instead, it learns to make configuration decisions solely through observations of the resulting performance of historical decisions. Cuttlefish automatically learns the adaptive configuration policy for diverse AR video streams and obtains a gratifying QoE. The experimental results show that Cuttlefish achieves a 18.4%-25.8% higher QoE than the other prior designs.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3