Deep Learning for Analyzing User and Entity Behaviors

Author:

Mohanty Rasmita Kumari1,Kumar Amaravarapu Pramod1,Padmaja Rama2,Prashanthi Vempaty3

Affiliation:

1. Department of CSE, VNR Vignana Jyothi Institute of Engineering and Technology ,Hyderabad, India

2. Department of Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, India

3. Department of Information Technology, Chaitanya Bharathi Institute of Technology, Hyderabad, India

Abstract

User and entity behavior analytics (UEBA) is a critical component of modern cybersecurity strategies aimed at detecting and mitigating security threats within enterprise environments. The system is designed to enhance security through the analysis of user and entity actions. The architecture encompasses data collection and integration techniques, feature extraction, deep learning models, detecting, and analyzing. Data collection strategies acquire statistics from quite a few sources, such as system logs, network site visitors, and application logs, resulting in a comprehensive dataset for analysis. Feature extraction transforms uncooked facts right into a meaningful representation, for reading a deep modelling can locate patterns in person conduct and entity conduct. Long-term and brief-term reminiscence (LSTM) and convolutional LSTM (ConvLSTM) fashions are used to investigate temporal, spatial, and temporal dependence, respectively. It detects irregularities and makes immediate corrections.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3