Real-Time Symptomatic Disease Predictor Using Multi-Layer Perceptron

Author:

Singh Pancham1ORCID,Kansal Mrignainy1ORCID,Singh Ayush Pratap1,Verma Ayushi1,Tyagi Snigdha1,Singh Aditya Vikram1

Affiliation:

1. Ajay Kumar Garg Engineering College, Ghaziabad, India

Abstract

Early disease diagnosis is crucial for effective treatment, but current healthcare methods have limitations. Supervised machine learning algorithms, particularly deep learning networks, have proven effective in developing medical diagnostics and real-time applications for detecting high-risk diseases. This paper evaluates five algorithms: Multilayer perceptron (MLP), random forest, decision tree, Naive Bayes, and K-Nearest neighbours (KNN) for predicting diseases based on user-entered symptoms. MLP outperformed other algorithms, achieving an accuracy of 97.2%, which is 4-5% higher than existing disease prediction models. Notably, existing techniques account for only 94% accuracy on average. Highlighting the potential of MLP in early disease diagnosis, this paper concludes by summarizing its goals, challenges, and outcomes.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empowering Farmers: An AI-Based Solution for Agricultural Challenges;Studies in Computational Intelligence;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3