Comparative Analysis of Electroencephalogram Signals using Ensemble methods for Epilepsy Detection

Author:

Niranjan S1,Raj Samson Arun1,Jebaseeli T Jemima1,Marshal S.1,Ashik S. S.1

Affiliation:

1. Karunya Institute of Technology and Sciences, India

Abstract

A timely and precise diagnosis is essential for effective treatment of epilepsy, a neurological condition characterized by recurrent seizures. Because of their capacity to capture cerebral processes, electroencephalogram (EEG) data are crucial in the diagnosis of epilepsy. The proposed system gives a detailed comparison of EEG signal processing strategies for epilepsy detection utilizing ensemble techniques and investigates the usefulness of ensemble algorithms such as gradient boosting, AdaBoost, XGBoost, and bagging classifier in improving epilepsy detection. Through the use of these ensemble approaches, the system preprocesses the EEG data, extracts features, and classifies them. Accuracy, precision, recall, and F1-score are performance indicators that are used to assess each ensemble approach's efficiency. The results were obtained through extensive testing on a well-curated dataset. The finding of the proposed system clarifies the positive impacts and regulates each ensemble technique for determining the presence of epilepsy.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3