Multimodal Outputs for the Workplace From Generative AI

Author:

Hai-Jew Shalin1ORCID

Affiliation:

1. Hutchinson Community College, USA

Abstract

Workplace documents are a combination of genre (form) and topic (content), and there are a variety of standards they must meet to be usable. Most such files are also multimodal, consisting of both text and still imagery. When outputting multimodal digital works for the workplace from multimodal generative AI (GAI) tools, their usability depends on various factors. This work explores some elicited multimodal outputs (text + imagery) from a popular multimodal generative AI tool to assess the respective quality based on practical dimensions. This work offers an early assessment for just how useful multimodal generative AIs are for this broad use case. And this work offers a checklist of factors to evaluate for multimodal file output quality for the workplace. Some initial observations are made about the practical usability of the multimodal GAI for outputs for professional workplace usage, based on this light prompt-response-analysis exploration.

Publisher

IGI Global

Reference83 articles.

1. Antony, V. N., & Huang, C. M. (2023). ID. 8: Co-Creating visual stories with Generative AI. arXiv Preprint arXiv:2309.14228.

2. Multimodal Machine Learning: A Survey and Taxonomy

3. Bell, G., Burgess, J., Thomas, J., & Shadiq, S. (2023). Rapid Response Information Report: Generative AI-language models (LLMs) and multimodal foundation models (MFMs). Academic Press.

4. Bensaid, E., Martino, M., Hoover, B., & Strobelt, H. (2021). Fairytailor: A multimodal generative framework for storytelling. arXiv Preprint arXiv:2108.04324.

5. Bewersdorff, A., Hartmann, C., Hornberger, M., Seßler, K., Bannert, M., Kasneci, E., . . . Nerdel, C. (2024). Taking the next step with Generative Artificial Intelligence: The transformative role of multimodal Large Language Models in science education. arXiv preprint arXiv:2401.00832.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3