A Deep Learning-Based Malarial Parasite Detection Using Blood Smear Images for Healthcare Techniques

Author:

Swaminathan Dilipkumar1ORCID,Thanuja R.2ORCID,Krishna Raavi Vijay2,Dunna Harshavardhan Reddy2,Thutte Sai Goutham2

Affiliation:

1. Vellore Institute of Technology, India

2. SASTRA University, India

Abstract

Malaria is a vector-borne infectious disease that spreads through the bites of infected female mosquitoes, namely Anopheles, infected with the Plasmodium parasite. When an infected mosquito bites a person, the parasite increases its count in the affected person's liver and begins to destroy red blood cells. Traditionally, malaria diagnosis involves visually examining blood under a microscope, but this method can vary based on the expertise and experience of the pathologist. Different types of deep learning techniques have been used to detect infected blood cells automatically to improve diagnosis effectively. However, these methods often require expert knowledge to adjust features for detection. The proposed system of tuning the features using deep learning techniques can accurately detect malaria without needing hand-crafted features. This will be tested on a dataset (blood smear images) that can be accessed by the general public from NIH.

Publisher

IGI Global

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3