Rating-Based Guidance System for Public Safety Using Classified Localities

Author:

Lokeswari Y. Venkataramana1,D. Venkata Vara Prasad1,Jacob Shomona Gracia2,M. Mohamed Musaraf P.1,Aravind Babu1,Mohanram P. B.1

Affiliation:

1. Sri Sivasubramaniya Nadar College of Engineering, India

2. Bahrain Polytechnic University, Bahrain

Abstract

To automate the manual SOS procedure given in Kavalan mobile application and to provide users a safe path by the given source and destination (from the users). This work uses regression algorithms such as linear regression, decision trees, or support vector machines (SVM) to predict the rating for a current zone which can be used as input for generating the graph with rating as weights and the graph is used as the input for the Dijkstra algorithm which produces the safest path based on the rating. Thus, this path can be used to navigate the public safely to their destination while avoiding unsafe zones. Furthermore, a feedback form is available using which the user can provide textual as well as numerical feedback regarding the places they travel. Decision tree regression provides an accuracy of 89.4% compared with the other regression models since the dataset is categorical and less in size. The safety path is also being produced using Dijkstra's algorithm and the feedback is analysed using the T5 model.

Publisher

IGI Global

Reference30 articles.

1. On D2D communications for public safety applications

2. City of Austen, Texas. (2015). [Dataset]. City of Austen, Texas.https://data.austintexas.gov/Public-Safety/Annual-Crime-Dataset-2015/spbg-9v94

3. City of Austen, Texas. (2016). [Dataset]. City of Austen, Texas.https://data.austintexas.gov/Public-Safety/2016-Annual-Crime-Data/8iue-zpf6

4. City of Austen, Texas. (2017). [Dataset]. City of Austen, Texas.https://data.austintexas.gov/Public-Safety/2017-Annual-Crime/3t4q-mqs5

5. City of Austen, Texas. (2018). [Dataset]. City of Austen, Texas.https://data.austintexas.gov/Public-Safety/2018-Annual-Crime/pgvh-cpyq

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3