Deep Learning for Accurate Diagnosis of Benign Paroxysmal Positional Vertigo

Author:

Dong Jiaoxuan1,Li Ling1,Milanov Ivan Gospodinov2,He Songbin1,Dai Fangyu1ORCID,Liu Haipeng3ORCID

Affiliation:

1. Zhoushan Hospital, Wenzhou Medical University, China

2. University Hospital “St. Naum”, Bulgaria

3. Centre for Intelligent Healthcare, Coventry University, UK

Abstract

Benign paroxysmal positional vertigo (BPPV) is characterized by paroxysms of vertigo and nystagmus triggered by head position changes. The diagnosis of BPPV can be objectively determined through the objective analysis of nystagmus, making it a promising approach towards artificial intelligence (AI) -assisted diagnosis. The diagnostic criteria for BPPV have been clearly defined, and standardized protocols for data collection have been established. Video-oculography utilizing infrared cameras has been employed for the quantification of nystagmus. These objective data can be used to train AI algorithms. Utilizing deep learning models allows for accurate tracking of pupil movement trajectories, facilitating the identification of nystagmus types, and making automated diagnosis of BPPV possible. This chapter summarizes the recent advances in AI-assisted diagnosis of BPPV and discusses the limitations and challenges in clinical practice.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3