An Extensive Investigation of Meta-Heuristics Algorithms for Optimization Problems

Author:

Ramalingam Renugadevi1,J. Shobana2ORCID,K. Arthi2,G. Elangovan2,S. Radha3ORCID,N. Priyanka4ORCID

Affiliation:

1. RMK Engineering College, India

2. SRM Institute of Science and Technology, India

3. Vivekanandha College of Engineering for Women, India

4. Vellore Institute of Technology, India

Abstract

Metaheuristic algorithms represent a class of optimization techniques tailored to tackle intricate problems that defy resolution through conventional means. Drawing inspiration from natural phenomena like genetics, swarm dynamics, and evolution, these algorithms traverse expansive search spaces in pursuit of identifying the optimal solution to a given problem. Well-known examples include genetic algorithms, particle swarm optimization, ant colony optimization, simulated annealing, and tabu search. These methodologies find widespread application across diverse domains such as engineering, finance, and computer science. Spanning several decades, the evolution of metaheuristic algorithms entails the refinement and diversification of optimization strategies rooted in natural systems. As indispensable tools in addressing complex optimization challenges across various fields, metaheuristic algorithms are poised to remain pivotal in driving technological advancements and fostering novel applications.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3