Item Selection Using K-Means and Cosine Similarity

Author:

Dhabliya Dharmesh1ORCID,Jain Kshipra2,Bargavi Manju3,Deepak 4,Dhablia Anishkumar5,Kumar Jambi Ratna Raja6ORCID,Gupta Ankur7ORCID,Pramanik Sabyasachi8ORCID

Affiliation:

1. Vishwakarma Institute of Information Technology, India

2. ATLAS SkillTech University, India

3. Jain University, India

4. Vivekananda Global University, India

5. Altimetrik India Pvt. Ltd., India

6. Genba Sopanrao Moze College of Engineering, India

7. Vaish College of Engineering, India

8. Haldia Institute of Technology, India

Abstract

In today's digital world, recommender systems (RS) are crucial since they provide tailored suggestions depending on user preferences. In order to get beyond the constraints of RS, this chapter presents a revolutionary machine learning technique that uses cosine similarity, embeddings, and k-means clustering. The difficulties and solutions associated with using k-means clustering in RS are covered in the first part. Various approaches are investigated to provide an all-encompassing perspective on recommendation systems. The next part discusses using cosine similarity and embeddings to improve the quality of recommendations. High-dimensional data is made simpler by embeddings, and similarity is precisely measured using cosine similarity. Transparency is ensured by covering dataset selection, analysis, and solutions in this chapter. The system architecture is covered in the concluding section, emphasizing approaches. This chapter provides information about the development of RS.

Publisher

IGI Global

Reference16 articles.

1. Context-Aware Recommender Systems

2. AhamadS.VeeraiahV.RameshJ. V. N.RajadeviR.ReejaS. R.PramanikS.GuptaA. (2023). Deep Learning based Cancer Detection Technique, Thrust Technologies’ Effect on Image Processing. IGI Global.

3. A Study of Recent Recommender System Techniques

4. Improving collaborative filtering recommender system results and performance using genetic algorithms

5. Do, M. P., & Nguyen, Dung & Nguyen., L. (2010). Model-based approach for Collaborative Filtering. The 6th International Conference on Information Technology for Education (IT@EDU2010). Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3