Machine Learning and Sentiment Analysis

Author:

Ananth kumar T.1ORCID,J. Zaafira1,Kanimozhi P.1,R. Rajmohan2,Ananth Christo3ORCID,Ajagbe Sunday Adeola4ORCID

Affiliation:

1. IFET College of Engineering, India

2. SRM Institute of Science and Technology, India

3. Samarkand State University, Uzbekistan

4. First Technical University, Ibadan, Nigeria

Abstract

Customer feedback shapes businesses and improves customer experiences in the age of advanced technology and interconnectedness. This study uses machine learning in sentiment analysis to gain customer feedback insights. An efficient and automated method to analyze large volumes of customer comments, reviews, and opinions will help businesses make data-driven decisions. The study begins with sentiment analysis, machine learning, and natural language processing theory. Lexicon-based, machine learning classifier, and deep learning sentiment analysis methods are compared for customer feedback data handling. Next, a large dataset of customer feedback samples from online sources, social media, and review sites is collected. Preprocessing the data handles noise, missing values, and feature extraction to make it suitable for machine learning algorithms. The experimental phase uses several cutting-edge machine learning models to analyze customer feedback sentiment. The proposed work also examines ensemble and transfer learning methods to improve model performance.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3