Advancing Healthcare Through Data Science Techniques for Comprehensive Analysis and Visualization of Healthcare Data

Author:

S. G. Janani Ratthna1ORCID,Jothikumar Karthikeyan1ORCID,P. Priyadharshini1ORCID

Affiliation:

1. National Engineering College, Kovilpatti, India

Abstract

As an interdisciplinary field, data science uses scientific techniques, algorithms, and methodologies to extract knowledge from various kinds of data. In order to better understand the relationship between data science and healthcare, this study focuses on the analysis and visualization of healthcare data. Data analysis in healthcare involves using statistical techniques and algorithms to identify patterns, trends, and relationships within the data. This can help healthcare organizations and researchers understand the effectiveness of treatments, identify risk factors for diseases, and improve patient outcomes. Visualization is the process of representing data in a visual or graphical format, such as charts, graphs, and maps. It helps in understanding complex data sets, identifying patterns, and communicating insights effectively. In healthcare data analysis, visualization techniques are used to present the findings and results in a visually appealing and understandable manner.

Publisher

IGI Global

Reference16 articles.

1. Ali, Emre, & Ibraheem. (2021). A Survey on IoT Smart Healthcare: Emerging Technologies, Applications, Challenges, and Future Trends.https://arxiv.org/

2. A Comprehensive Survey of the Internet of Things (IoT) and AI-Based Smart Healthcare;A.Atima;IEEE Access : Practical Innovations, Open Solutions,2021

3. Damien, van de W, Ward, Remko, Helms., & Nadine. (2023). Deploying predictive analytics to enhance patient agility and patient value in hospitals: A position paper and research proposal. Elsevier.

4. Djihane Houfani, S., Slatnia, O., Kazar, H., & Saouli, A. (2022). Artificial intelligence in healthcare: a review on predicting clinical needs. IEEE.

5. HaythamS.YichuanW. (2021). Shifting artificial intelligence to be responsible in healthcare: A systematic review. Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3