Software Development and Best Practices

Author:

Turki Ahmed Ibrahim1,Allur Sushma2,Deevi Durga Praveen3,Palanisamy Punitha4ORCID

Affiliation:

1. University of Samarra, Iraq

2. Astute Solutions LLC, USA

3. Technologies Inc., India

4. Tagore Institute of Engineering and Technology, India

Abstract

The growth of science and technology has made it feasible to create software programmes that can quickly solve problems that used to take a long time to resolve. Non-linear equations frequently arise in various complex difficulties that we encounter in our everyday existence. This study aims to assess the effectiveness of the Secant technique and the Newton Raphson method in solving non-linear equations in Python. The programming test was conducted three times with different coefficients and starting values. Another objective of this research is to assess the effectiveness of numerical integration utilising Simpson's methods through the utilisation of Pascal-based software programmes. Two variants of the numerical integration method are the Simpson method. After reviewing research data, the Simpson 1/3 approach proved to be the most accurate strategy to estimate integral values using exponential, polynomial, and trigonometric functions within the 0.001%−0.005% range. The Simpson 1/3 technique runs Pascal faster than Simpson 3/8.

Publisher

IGI Global

Reference13 articles.

1. Comparative Study of Numerical Methods for Solving Non-linear Equations Using Manual Computation

2. Comparison of the Gauss-Legendre, Gauss-Lobatto, and Gauss-Kronrod Methods for Numerical Integration of Exponential Functions;R. N.Darmawan;Journal of Mathematics and Mathematics Education,2016

3. Comparison of Numerical Solutions for Double Integrals in Algebraic Functions using the Romberg Method and Monte Carlo Simulation.;E.Ermawati;MSA Journal,2017

4. Efektivitas Metode Trapesium dan Simpson Dalam Penentuan Luas Menggunakan Pemrograman Pascal

5. Development of web-based engineering numerical software (WENS) using MATLAB: Applications to linear algebra

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3