Foetal Activity Detection Using Deep Convolution Neural Networks

Author:

Santhappan Xavier Arockiaraj1ORCID,Bis Ronica2

Affiliation:

1. Adhiyamaan College of Engineering, India

2. Sathyabama Institute of Science and Technology, India

Abstract

Ultrasound is a conventional diagnostic instrument employed in prenatal care to track the progression and advancement of the fetus. In routine clinical obstetric assessments, the standard planes of fetal ultrasound hold considerable importance in evaluating fetal growth metrics and identifying abnormalities. In this work, a method to detect FFSP using deep convolutional neural network (DCNN) architecture to improve detection efficiency is presented. Squeeze net, 16 convolutional layers with small 3x3 large kernel, and all three layers form the proposed DCNN. The final pooling layer uses global average pooling (GAP) to reduce inconsistency in the network. This helps reduce the problem of overfitting and improves the performance from different training data. To improve cognitive performance, data augmentation methods developed specifically for FFSP are used in conjunction with adaptive learning strategies. Extensive testing shows that the proposed method gives accuracy of 96% which outperforms traditional methods, and DCNN is an important tool to identify FFSP in clinical diagnosis.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3