A Data-Driven Model for Predicting Fault-Tolerant Safe Navigation in Multi-Robot Systems

Author:

Madhesh A.1,Priyadharshini Clara Barathi1

Affiliation:

1. Karpagam Academy of Higher Education, India

Abstract

Earlier methods focused on reducing the forecast uncertainty for individual agents and avoiding this unduly cautious behavior by either employing more experienced models or heuristically restricting the predictive covariance. Findings indicate neither the individual prediction nor the forecast uncertainty have a major impact on the frozen robot problem. The result is that dynamic agents can solve the frozen robot problem by employing joint collision avoidance and clear the way for each other to build feasible pathways. Potential paths for safety evaluation are ranked according to the likelihood of collisions with known objects and those that happen outside the planning horizon. The whole collision probability is examined. Monte Carlo sampling is utilized to approximate the collision probabilities. Designing and selecting routes to reach the intended location, this approach aims to provide a navigation framework that reduces the likelihood of collisions.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3