Privacy-Preserving Machine Learning Techniques for IoT Data in Cloud Environments

Author:

Vashishth Tarun Kumar1ORCID,Sharma Vikas1ORCID,Sharma Kewal Krishan1ORCID,Kumar Bhupendra1ORCID,Chaudhary Sachin1ORCID,Gupta Manoj1

Affiliation:

1. IIMT University, India

Abstract

The proliferation of internet of things (IoT) devices has resulted in an unprecedented influx of data, leading to heightened concerns regarding the privacy and security of sensitive information in cloud environments. Privacy-preserving machine learning techniques have emerged as essential tools for ensuring the confidentiality of IoT data while facilitating meaningful analysis. This chapter provides an overview of the key principles and methodologies employed in privacy-preserving machine learning for IoT data in cloud environments. Key considerations encompass data anonymization, secure transmission, and adherence to stringent data protection regulations such as the General Data Protection Regulation (GDPR). Robust encryption and access control mechanisms are implemented to safeguard data integrity while allowing for effective analysis. Techniques like homomorphic encryption and secure multi-party computation enable secure computations on encrypted data, ensuring privacy while maintaining the utility of the data.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3