Explainable Bayesian-Optimized XGBoost Model for Component Failure Detection in Predictive Maintenance

Author:

Kumar Hemant1ORCID,Bhartiy Krishna Kant2,Dhabliya Dharmesh3ORCID,Agarwal Rashi4ORCID,Kumar Sunil1ORCID,Tripathi Shivneet1

Affiliation:

1. Chhatrapati Shahu Ji Maharaj University, India

2. School of Entrepreneurship and Management, Harcourt Butler Technical University, India

3. Department of Information Technology, Vishwakarma Institute of Information Technology, Pune, India

4. Harcourt Butler Technical University, India

Abstract

This study employs predictive maintenance to enhance the Explainable XGBoost Model for predicting failures in industrial components. The research utilizes a model that employs the adaptive sliding window approach to extract features. The timeframe for this approach is set at 24 hours. This method leverages multi-device sensor data to extract the features. The BO-XGBoost model is assessed using accuracy, MCC, F1-Score, and G-mean. The measures achieved 99.87%, 0.988, 0.990, and 0.0989, respectively. The SHAP analysis method also identifies the characteristics of target variable prediction. The variable “rotatemean_24” is the most significant predictor. The model is easily understandable, aiding in comprehending relationships between features and outcomes. Therefore, it can assist in making decisions regarding predictive maintenance. Research has shown that implementing the optimized Explainable XGBoost Model can enhance factory maintenance efficiency and cost-effectiveness. The model's predictive capabilities enable proactive maintenance by identifying machine faults in advance.

Publisher

IGI Global

Reference43 articles.

1. Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing

2. Blockchain Implementation in Financial Sector and Cyber Security System

3. Empirical Analysis on Accounting Information System Usage in Banking Sector in Jordan.;A. Y. B.Ahmad;Academy of Accounting and Financial Studies Journal,2019

4. E-Commerce Trend Analysis and Management for Industry 5.0 using User Data Analysis.;A. Y. B.Ahmad;International Journal of Intelligent Systems and Applications in Engineering,2023

5. Hybrid convolutional neural network (CNN) for Kennedy Space Center hyperspectral image

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pioneering Excellence in Semiconductor Manufacturing via XGBoost with BAT Optimization for Cutting-Edge Predictive Maintenance;2024 IEEE International Conference on Big Data & Machine Learning (ICBDML);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3